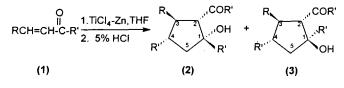


PII: S0040-4039(97)00455-3

A Novel Cyclodimerization of α, β-Unsaturated Ketones Induced by Low-valent Titanium

Long-hu Zhou^{*1}, Da-qing Shi¹, Yuan Gao¹, Wen-bin Shen², Gui-yuan Dai¹, and Wei-xing Chen³

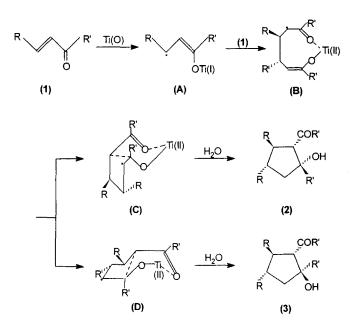

Department of Chemistry, Xuzhou Normal University, Xuzhou, 221009, China
Physical & Chemistry Center of Jiansu Province, Nanjing, 210008, China

3. Department of Chemistry, Nanjing University, Nanjing, 210008, China

Abstract: The intermolecular and intramolecular coupling reaction of α, β-unsaturated ketones induced by TiCl₄-Zn was studied. A possible reaction mechanism was proposed. © 1997 Elsevier Science Ltd.

We recently reported that the low-valent titanium reagent induced intermolecular reductive coupling reactions of nitro compounds with nitriles¹, carbonyl compounds with nitriles² and intramolecular or intermolecular coupling reactions of carboxylic derivatives with ketones³. Although several results are reported on saturated ketones, only few studies concerning unsaturated ketones have been published. Pons reported that the reduction of mesityl oxide with low-valent titanium only gave intermolecular coupling products 2,4,5,7-tetramethyl-octa-2,4,6-triene and 2,4,5,7-tetramethyl-octa-2,6-dien-4,5-diol⁴. We now describe our preliminary results on a novel cyclodimerization via an intermolecular reductive cross coupling of α , β -unsaturated ketones by TiCl₄-Zn, which differ from saturated ketones and mesityl oxide, to yield substituted cyclopentanols.

When α , β -unsaturated ketones (1) were treated with low-valent titanium, the cyclodimerization products 2-aroyl-1,3,4-triaryl cyclopentanol derivatives (2) were obtained along with their stereoisomers 2-aroyl-1,3,4-triaryl cyclopentanol (3)⁵.

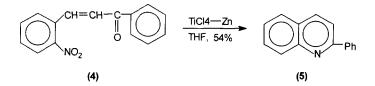


2729

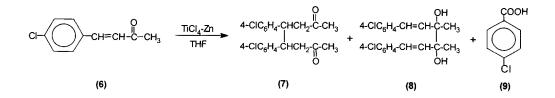
		Isolated	Yield (%)
R	Rʻ	2	3
Ph	Ph	43.2	23.9
Ph	$4-CH_3C_6H_4$	51.8	15.8
Ph	$4-CH_3OC_6H_4$	59.1	9.1
4-ClC ₆ H ₄	Ph	41.1	16.5
4-CH ₃ C ₆ H ₄	Ph	47.3	20.3
3,4-OCH ₂ OC ₆ H ₃	Ph	39.7	15.9
3,4-OCH ₂ OC ₆ H ₃	$4-CH_3C_6H_4$	59.5	11.2
3,4-OCH ₂ OC ₆ H ₃	$4-CH_3OC_6H_4$	63.8	

Table 1. TiCl₄-Zn induced cyclodimerization of α , β -unsaturated ketones

The reaction is in striking contrast with that in the case of SmI_2 and YbI_2^6 and $CeCl_3/NaBH_4^7$ and not in agreement with that in literature⁵. The mechanism of this reaction may be postulated as scheme I.



Scheme I


 $TiCl_4$ is reduced by Zn dust to give low-valent titanium. In the initial step, an electron is transferred from low-valent titanium to chalcone (1) to give radical enolate (A), the radical anion then attacks the chalcone to form the carbon-carbon bond and generates intermediate (B). The latter then would be transformed to (2) and (3) through a stable chair form transition state (C) and a less stable boat form (D), respectively.

A general experimental procedure is as follows: A dry 100ml flask was charged with zinc dust (2.60g, 40mmol), TiCl₄(2.2ml, 20mmol) and THF(20ml). The mixture was refluxed for 2h under argon atmosphere, then cooled to room temperature. A black slurry was formed. A solution of chalcone (10mmol) in the THF(15ml) was dropped to the reaction mixture in five minutes. After being stirred for 0.5h at r.t., the mixture was quenched with 5%HCl (50ml) and extracted with CHCl₃ (3 × 30ml). The combined organic layer was washed with water (2 × 30ml), dried (Na₂SO₄) and evaporated. The residue was purified by chromatography on silica gel (ethyl acetate : benzene : petroleum ether (60-90 °C), 1 : 4 : 8) to give (2) and (3) ⁸.

However, treatment of 2-nitrochalcone (4) with $TiCl_4$ -Zn in the THF under the same reaction condition only afforded 2-phenylquinoline (5)⁹, which is the intramolecular reductive cyclization product. The cyclodimerization products (2 and 3) of chalcone were not obtained.

On the other hand, the reaction of α , β -unsaturated ketone (6) with the same reagent afforded 4,5-di(4'-chlorophenyl)-octa-2,7-dione(7) (22.4%) and 1,6-di(4'-chlorophenyl)-3,4-dimethyl-hexa-1,5-dien-3,4-diol (8) (18.6%) along with 4-chlorobenzoic acid (9) (28.5%)¹⁰. The formation of (9) is interesting, since the reduction does not take place formally as with (1) and (4) and other ketones, however the mechanism is uncertain at present.

Acknowledgement :

We thank the National Nature Science Foundation of China, the Science and Technology Committee and the Education Committee Nature Science Foundation of Jiangsu Province for generous support of this project.

References and Notes:

- Jian-xie Chen, Wen-ying Chai, Ji-lin Zhu, Ju Gao, Wei-Xing Chen, Tsi-yu Kao Synthesis 1993, 87.
- Ju Gao, Ming-yang Hu, Jian-xie Chen, Su Yuan, Wei-xing Chen Tetrahedron Lett. 1993, 34, 1617.
- Da-qing Shi, Jian-xie Chen, Wen-ying Chai, Wei-xing Chen, Tsi-yu Kao Tetrahedron Lett. 1993, 34, 2963.
- 4. Pons, J. M.; Zahra, J. P.; Santelli, M. Tetrahedron Lett. 1981, 22, 3965.
- Ken Takaki, Fumikazu Beppu, Shinji Tanaka, Yuichiro Tsubaki, Tetsuro Jintoku, Yuzo Fujiwara J. Chem. Soc., Chem. Commun. 1990, 516.
- 6. Girard, P.; Namy, J. L.; Kagan, H. B. J. Am. Chem. Soc. 1980, 102, 2693.
- 7. Luche, J. L. J. Am. Chem. Soc. 1978, 100, 2226.
- Selected data for compounds (2) and (3): 2a, mp 192-194 °C. IR(KBr, ν, cm⁻¹): 3440(OH), 1640(CO).¹HNMR(500MHz,CDCl₃ δ ppm):7.10-7.57(20H, m, ArH), 5.20(1H,s,OH,exchangeable), 4.53(1H, d, J 11.7Hz, C²H), 4.10(1H, dd, J 11.7, 10.2Hz, C³H), 3.76(1H, ddd, J 10.7, 10.2, 6.1Hz, C⁴H), 3.00(1H, dd, J 14.4, 10.7Hz, C⁵H), 2.58(1H, dd, J 14.4, 6.1Hz, C⁵H). Elemental analysis: found(%): C, 86.17; H, 6.20; Calc. For C₃₀H₂₆O₂: C, 86.09; H, 6.26.
 3a, mp 229-231 °C. IR(KBr, ν, cm⁻¹): 3500(OH), 1660(CO). ¹HNMR(500MHz,CDCl₃, δ ppm): 7.07-7.48(20H, m, ArH), 4.51(1H, d, J 5.4Hz, C²H), 3.94-3.99(2H, m, C³H, C⁴H), 3.15(1H, dd, J 12.7, 6.3Hz, C⁵H), 2.37(1H, dd, J 12.7, 5.0Hz, C⁵H),2.05(1H,s,OH,exchangeable). Elemental analysis: found(%): C, 86.23; H, 6.37; Calc. For C₃₀H₂₆O₂: C, 86.09; H, 6.26.
- 9. Using 10% aqueous K₂CO₃ to quench the reaction mixture and using eluent (dichloromethane : petroleum ether(60-90 °C), 1:1) to purify the product are difference from the general procedure.
- 10. Using eluent (ethyl acetate: petroleum ether(60-90 °C),1:4) to isolate the reaction mixture is only difference from the general procedure.

(Received in China 12 November 1996; revised 9 December 1996; accepted 15 January 1997)